Tagus Artix 7 PCI Express Development Board

by Numato Lab Help Center

1. Introduction	3
2. How to Use Tagus Artix 7 PCI Express Development Board	3
2.1. Hardware Accessories Required	3
2.2. Connection Diagram	4
2.3. Power	4
2.4. USB Serial Bridge	4
2.5. JTAG	5
2.6. RGB LED	5
2.7. JTAG Chain Configuration	5
2.8. Configuration Mode Switch	6
2.9. PROG_B and Reset Buttons	6
2.10. FMC VADJ Power Supply	6
2.11. PCIe x1 Edge Connector	6
2.12. FMC Connector	7
3. USB-Serial Bridge Driver	8
3.1. Installing Driver for USB Serial Converter on Windows	8
4. Generating Bitstream Using Vivado	8
5. Programming Tagus Using JTAG	10
6. Programming QSPI Flash using Vivado 1	12
7. Technical Specifications 1	15
8. Mechanical Dimensions 1	15
9. Vivado XDC Constraints 1	16
10. Schematics 1	16
11. Tagus FMC Easy Reference 1	6

1. Introduction

<IMAGE>

Tagus is an easy to use FPGA Development Board featuring Xilinx Artix-7 FPGA with x1 PCIe interface, TPM – SPI interface, SFP+ connectors, and 2GB DDR3 SDRAM. This board features Xilinx XC7A100T– FGG484 FPGA. The board features Low Pin Count (LPC) high-speed FMC connector conforming to **ANSI/VITA 57.1 Standard** for the purpose of adding additional features to the board by using custom or commercial off-the-shelf daughter boards.

Applications:

- Parallel Processing and Accelerators
- Product Prototype Development
- Development and Testing of custom embedded processors
- Signal Processing
- Communication Devices Development
- Data Acquisition
- · Educational tool for Schools and Universities

Board features

- FPGA: Artix-7 XC7A100T in -1 FGG484 package
- 1 lane PCIe Gen1.0 (2.5GT/s)
- DDR3: 2Gb DDR3 (MT41J128M16HA-125:K or equivalent)
- 128 Mb QSPI flash memory (N25Q128A13ESE40E) for Configuration and optional data storage
- USB to UART serial converter
- 1 x 100MHz CMOS oscillator
- Maximum 76 IOs for user-defined purposes on ANSI/VITA 57.1 Standard compliant FMC LPC connector
- 1x GTP lanes upto 2.5Gbps on ANSI/VITA 57.1 Standard compliant FMC LPC connector
- 1 RGB LED for custom use
- 1x TPM SPI Interface
- 2x SFP+ Cages
- MicroSD adapter for bulk data storage
- Onboard voltage regulators for single power rail operation
- Can be powered from PCIe slot or from an external power supply
- JTAG header for programming and debugging
- All differential pairs are length matched on the board

2. How to Use Tagus Artix 7 PCI Express Development Board

2.1. Hardware Accessories Required

Along with the board, following accessories are required for easy and fast installation.

- 1. 12 V DC Power Supply (not needed if the board is inserted into a motherboard)
- 2. A Xilinx Platform Cable USB II compatible JTAG programmer
- 3. USB Male A to Micro B cable (optional)

2.2. Connection Diagram

(https://numato.com/help/wp-content/uploads/2018/05/tagus_connection_diagram.png)

2.3. Power

The Tagus requires +12V power supply to function properly. Tagus can be supplied power in 3 ways:

- 1. External +12V power via DC Barrel Jack Connector
- 2. External +12V power via 3x2 PCIe Power Connector.
- 3. Via Motherboard when the Tagus is plugged into a PCIe slot that is capable of powering the Tagus

The current requirement for this board largely depends on your application. The Tagus module works on power supply of 1 A of current for simple applications. However, a power supply 2 A of current is recommended for a smooth running of bigger applications. Please consult FPGA data sheet for more details on power requirements.

2.4. USB Serial Bridge

USB Serial Bridge can be used to interface with PC using serial interface. It is primarily used to output debug information or as a console for the design running on the board. <IMAGE> A Micro USB type cable should be used to connect Tagus to host PC. An FT234 is used as the USB-Serial Bridge IC. The USB-Serial interface features hardware flow control using RTS and CTS signals, in case users need to use hardware flow control. An extra signal CBUS0 from FT234X is also connected to FPGA, which can be used as host-controlled GPIO or can be used for other purpose.

2.5. JTAG

JTAG connector allows the FPGA's JTAG registers to be accessed using a JTAG cable compatible with Xilinx Platform Cable USB. Use this header to attach JTAG cable for programming and debugging.

(https://numato.com/help/wp-

2.6. RGB LED

Tagus features one RGB LED which can be used for custom or debug purposes. The LED is wired in active-low configuration.

2.7. JTAG Chain Configuration

content/uploads/2018/05/tagus_itag.png)

JTAG chain can be modified using jumper P7 near JTAG header.

Following diagram shows JTAG chain

(https://numato.com/help/wp-content/uploads/2018/05/tagus_jtag_chain.png)

Tagus has automatic FMC detection using PRSNT_M2C_L signal from FMC. Normally, when an FMC board is configuration: not connected, the Tagus's onboard circuitry will automatically close the JTAG chain keeping FMC out from the chain, so no user intervention is required. But, still jumper P7 has been provided as a redundant backup to close

the JTAG chain in case the automatic circuitry doesn't work due to non-compliant FMC modules connected to the Tagus, or any or unforeseen reasons.

2.8. Configuration Mode Switch

FPGA startup configuration mode can be selected using switch S2.

<IMAGE>

Sliding it to ON puts FPGA in "JTAG" configuration mode. Sliding it to OFF puts the FPGA to "Master SPI" configuration mode.

2.9. PROG_B and Reset Buttons

PROG_B Button

Tagus features a Push-button **S1** normally meant to be used as "PROG_B" signal for configuration reset. Pushbutton S1 is connected to FPGA pin **N12.** For enabling manual configuration reset, push-button **S1** connected to GND. The user can reconfigure the FPGA manually, by pressing this push-button S1.

"PROG_B" is active-low input pin (pulled up with 4.7K external resistor) to the FPGA and it controls the configuration logic. When PROG_B pin is de-asserted, resets the FPGA and initializes the new configuration.

Reset Button

Tagus features a Push-button **S3** normally meant to be used as "Reset" signal for designs running on FPGA. Push-button S3 is connected to FPGA pin **P17**. Push-button S3 is **active-high**, and users need to enable FPGA's internal **Pulldown** on the pin P17 to use the pushbutton correctly. This pushbutton can also be used for any other input and is not just limited to be used as a Reset signal.

2.10. FMC VADJ Power Supply

VADJ Power Supply for FMC Bank A is configurable via jumpers J2. Following are the jumper configurations for different voltages for VADJ supply.

Edit(https://numato.com/help/wp-admin/admin.php?page=tablepress&action=edit&table_id=243) Jumper on J2 Header FMC VADJ Power Supply (Volts)

Jumper on JZ meader	
No jumper anywhere	3.3
1 - 2	2.5
3 - 4	1.8
5 - 6	1.5
7 - 8	1.2

2.11. PCIe x1 Edge Connector

PCI Express 1.0 1-lane edge-connector on Tagus can be used to interface with host PCs via PCI Express protocol. Each lane is capable of 2.5 GT/s resulting in maximum theoretical data transfer rate of 250 MB/s for a single lane.

PCI Express x1 Edge Connector

Signal Name	Artix-7 (FGG484) Pin
Edit(https://numato.com/help/wp-admin/admin.php?page	=tablepress&action=edit&table_id=244)
Signal Name	Artix-7 (FGG484) Pin
PCIE_TX0_P	B4
PCIE_TX0_N	A4
PCIE_RX0_P	B8
PCIE_RX0_N	A8
PCIE_CLK0_P	F6
PCIE_CLK0_N	E6
PCIE_PERST	W20

2.12. FMC Connector

Tagus features a high speed, low pin-count FMC connector which can be used to provide additional features and capabilities to it using custom or commercial off-the-shelf daughter boards. Apart from IOs, 1 GTP lane is available via FMC connector for custom purpose.

FMC Banks A to D

Edit(https://numato.com/help/wp-admin/admin.php?page=tablepress&action=edit&table_id=245)

A	FMC Pin Name	Artix-7 FGG484 Pin	В	FMC Pin Name	Artix-7 FGG484 Pin	C	FMC Pin Name	Artix-7 FGG484 Pin	D	FMC Pin Name	Artix-7 FGG484 Pin
C1	GND	GND	D1	PG_C2M	1V20	G1	GND	GND	H1	VREF_A _M2C	NC
C2	DP0_C2 M_P	D5	D2	GND	GND	G2	CLK1_M 2C_P	K18	H2	PRSNT_ M2C_L	W17
C3	DP0_C2 M_N	C5	D3	GND	GND	G3	CLK1_M 2C_N	K19	H3	GND	GND
C4	GND	GND	D4	GBTCLK 0_M2C_ P	(F10	G4	GND	GND	H4	CLK0_M 2C_P	C18
C5	GND	GND	D5	GBTCLK 0_M2C_ N	E10	G5	GND	GND	H5	CLK0_M 2C_N	C19
C6	DP0_M2 C_P	D11	D6	GND	GND	G6	LA00_C C_P	D17	H6	GND	GND
C7	DP0_M2 C_N	C11	D7	GND	GND	G7	LA00_C C_N	C17	H7	LA02_P	E19
C8	GND	GND	D8	LA01_C C_P	J19	G8	GND	GND	H8	LA02_N	D19
C9	GND	GND	D9	LA01_C C_N	H19	G9	LA03_P	F13	H9	GND	GND
C10	LA06_P	J22	D10	GND	GND	G10	LA03_N	F14	H10	LA04_P	F18
C11	LA06_N	H22	D11	LA05_P	L19	G11	GND	GND	H11	LA04_N	E18
C12	GND	GND	D12	LA05_N	L20	G12	LA08_P	F16	H12	GND	GND
C13	GND	GND	D13	GND	GND	G13	LA08_N	E17	H13	LA07_P	B20
C14	LA10_P	H20	D14	LA09_P	N22	G14	GND	GND	H14	LA07_N	A20
C15	LA10_N	G20	D15	LA09_N	M22	G15	LA12_P	C14	H15	GND	GND
C16	GND	GND	D16	GND	GND	G16	LA12_N	C15	H16	LA11_P	A18
C17	GND	GND	D17	LA13_P	M18	G17	GND	GND	H17	LA11_N	A19
C18	LA14_P	K21	D18	LA13_N	L18	G18	LA16_P	E13	H18	GND	GND
C19	LA14_N	K22	D19	GND	GND	G19	LA16_N	E14	H19	LA15_P	F19
C20	GND	GND	D20	LA17_C	B17	G20	GND	GND	H20	LA15_N	F20

A	FMC Pin Name	Artix-7 FGG484 Pin	В	FMC Pin Name	Artix-7 FGG484 Pin	С	FMC Pin Name	Artix-7 FGG484 Pin	D	FMC Pin Name	Artix-7 FGG484 Pin
C21	GND	GND	D21	C_P LA17_C C_N	B18	G21	LA20_P	E16	H21	GND	GND
C22	LA18_C C P	J20	D22	GND	GND	G22	LA20_N	D16	H22	LA19_P	D20
C23	LA18_C	J21	D23	LA23_P	N18	G23	GND	GND	H23	LA19_N	C20
C24		GND	D24	1 A 23 N	N19	G24	1 A 22 P	D14	H24	GND	GND
C25	GND	GND	D25		GND	G25	L A22 N	D15	H25		C22
C26	IA27 P	M21	D26	LA26 P	N20	G26		GND	H26	L A21 N	B22
C27	$L \land 27 $ N	10121	D20 D27	LA20_Ι	M20	G20		B15	H27		
C28		GND	D28		GND	G28	LA25_Ν	B16	H28		B21
C20	GND	GND	D20		V/12	G20			H20	$L \land 24$ N	Δ21
025	OND	OND	025	K	· • · 12	020	OND	OND	1125		
C30	FMC_SC L	CN13	D30	FPGA_T DO_FM	U13	G30	LA29_P	C13	H30	GND	GND
C31	FMC_SE A	DN14	D31	C_TDI FMC_TD O	R13	G31	LA29_N	B13	H31	LA28_P	E22
C32	GND	GND	D32	3P3VAU X	VCC3V3	G32	GND	GND	H32	LA28_N	D22
C33	GND	GND	D33	FMC_TM	IT13	G33	LA31_P	A15	H33	GND	GND
C34	GA0	GND	D34	TRST L	NC	G34	LA31 N	A16	H34	LA30 P	E21
C35	12P0V	VCC12V 0	D35	GA1	GND	G35	GND	GND	H35	LA30_N	D21
C36	GND	GND	D36	3P3V	VCC3V3	G36	LA33 P	A13	H36	GND	GND
C37	12P0V	VCC12V 0	D37	GND	GND	G37	LA33_N	A14	H37	LA32_P	G21
C38	GND	GND	D38	3P3V	VCC3V3	G38	GND	GND	H38	LA32 N	G22
C39	3P3V	VCC3V3	D39	GND	GND	G39	VADJ	VCC_VA	H39	GND	GND
C40	GND	GND	D40	3P3V	VCC3V3	G40	GND	GND	H40	VADJ	VCC_VA DJ

3. USB-Serial Bridge Driver

3.1. Installing Driver for USB Serial Converter on Windows

This board requires a driver to be installed to use USB serial converter, for board's proper functioning when used with Windows. Ideally, Windows should automatically search and install the correct driver for Tagus via Windows Update. For manual installation, the FTDI VCP drivers are available for download from http://www.ftdichip.com/(http://www.ftdichip.com/)

4. Generating Bitstream Using Vivado

The PCI Express specification requires cards to be ready for link training within 100 ms after the host PC's power supply is stable.

Following constraints need to be added to the xdc file before synthesizing, implementing and generating a bitstream for a PCI Express design. These can be safely ignored if PCI Express interface is not used in the design.

```
set_property BITSTREAM.CONFIG.CONFIGRATE 66 [current_design]
set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]
set_property BITSTREAM.CONFIG.SPI_BUSWIDTH 4 [current_design]
```

Step 1: It is recommended to generate .bin bitstream file along with .bit bitstream file. Click "Bitstream Settings".

content/uploads/2016/10/vivado_bitstream_settings_location.png)

Step 2: Select "-bin_file*" option in the dialog window and Click OK.

🝌 Project Settings		×
	Bitstream	
30	(i) Note: Additional bitstream settings will be av	vailable once you open an implemented design.
General	Write Bitstream (write_bitstream)	
	td.pre	
Cinudation	td.post	
Simulation	-raw_bitfile	
	-mask_file	
Elaboration	-no_binary_bitfile	
	-bin_file*	
8	-readback_file	
Synthesis	-logic_location_file	
Synthesis	-verbose	
	More Options	
Implementation		
1010		
Bitstream		
ĪÞ		
	-bin_file* Write a binary bit file without header (.bin).	
?	Window Snin	OK Cancel <u>A</u> pply

(https://numato.com/help/wp-content/uploads/2016/10/vivado_bitstream_settings.png)

Step 3: Finally click "Generate Bitstream".

content/uploads/2016/10/vivado_generate_bitstream.png)

5. Programming Tagus Using JTAG

Tagus Artix-7 PCI Express FPGA Board features an onboard JTAG connector which facilitates easy reprogramming of SRAM and onboard SPI flash through JTAG programmer like "Xilinx Platform cable USB". Following steps illustrate how to program FPGA on Tagus using JTAG.

Step1: By using JTAG cable, connect Xilinx platform cable USB to Tagus and power it up.

Step2: Open Vivado project and open the target by clicking on the "Open Target" in "Open Hardware Manager" in the "Program and Debug" section of the Flow Navigator window. Select "Auto Connect".

content/uploads/2016/10/vivado_open_hardware_manager-e1475583576193.png)

Step3: If the device is detected successfully, then select "Program Device" by right click on the target device "xc7a100t_0" as shown below.

Hardware	? _ 🗆 🖒 ×	
Q 素 ♦ ∅ ▶ ≫	•	
Name	Status	
V localhost (1)	Connected	
✓ ■ xilinx_tcf/Xilinx/000016385788	Open	
v	Hardware Devi	ce Properties Ctrl+E
🌆 XADC (System Monitor		
	Program Devic	e
	Verify Device	
0	Refresh Device	,
	Add Configurat	ion Memory Device
<	Boot from Cont	iguration Memory Device
1	Program BBR	Key

(https://numato.com/help/wp-

content/uploads/2018/05/vivado_prog_device.png)

Step4: In the dialog window which opens up, Vivado automatically chooses correct bitstream file if the design was synthesized, implemented and bitstream generated successfully. If needed, browse to the bitstream which needs to be programmed to FPGA. Finally, click "Program".

À Program Device		×
Select a bitstream prog select a debug probes t programming file.	ramming file and download it to your hardware device. You can optionally file that corresponds to the debug cores contained in the bitstream	
Bitstre <u>a</u> m file:	D:/TagusDemo/TagusDemoļbit 🛞	
Debu <u>q</u> probes file:		
✓ Enable end of st	tartup check	
?	Program Cancel	

(https://numato.com/help/wp-content/uploads/2018/05/vivado_prog_device_2.png)

As soon as "Program" is clicked, a red colored LED (D1) on Tagus should light up, indicating that programming process is going on. This LED will turn off when the configuration is complete.

6. Programming QSPI Flash using Vivado

A .bin or .mcs file is required for programming Tagus's onboard QSPI flash.

Step 1: Open Vivado project and open the target by clicking on the "Open Target" in "Open Hardware Manager" in the "Program and Debug" section of the Flow Navigator window. Select "Auto

content/uploads/2016/10/vivado_open_hardware_manager-e1475583576193.png)

Step 2: If the device is detected successfully, then select "Add Configuration Memory Device" by right click on the target device "xc7a100t_0" as shown below.

content/uploads/2018/05/vivado_add_config_mem.png)

Step 3: Select the memory device "mt25ql128-spi-x1_x2_x4 (which is equivalent to n25q128-3.3v-spi-x1_x2_x4)", then click OK.

À Add Configuratio	on Memory Device									×
Choose a cor	nfiguration memory	y part. This can be cha	nged later.							
Filter										
Manufacturer	Micron	~			Туре	spi			~	
Density (<u>M</u> b)	128	~			Width	All			~	
Select Configuration	Memory Part		<u>R</u> eset All	Filters						
Name		Part	Manufact	Alias			Family	Туре	Densi	ty (.
🧊 mt25ql128-sp	pi-x1_x2_x4	mt25ql128	Micron	n25q128-3	.3v-spi-x1_)	(2_x4	mt25ql	spi	128	
*# mt25qu128-s	pi-x1_x2_x4	mt25qu128	MICFON	n25q128-1	.&v-spi-x1_)	K2_X4	mt25qu	spi	128	>
?							OK		Cancel	

(https://numato.com/help/wp-content/uploads/2018/05/vivado_select_mem_device1.png)

Add Configuration Memory Device Comp	leted		×	
Po you want to program the co	nfiguration memo	ry device now?		
Don't show this dialog again				
	OK	Cancal	1	
	UK	Calicer		

Step 4: After completion of Step 3 the following dialog box will open. Click OK.

Step 5: Browse to the working .bin file or the .mcs file (whichever applicable) and click OK to program as shown below. If programming is successful, a confirmation message will be displayed.

Program Configuration N	Nemory Device	×
lect a configuration file a	nd set programming options.	*
lemory Device: 🛑 mt	25ql128-spi-x1_x2_x4	
onfiguration file: D:/tag	us/sample.bin	See
PR <u>M</u> file:		
S <u>t</u> ate of non-config mem	I/O pins: Pull-none \vee	
Program Operations		
Address Range:	Configuration File Only	
✓ <u>E</u> rase		
Blank Check		
✓ P <u>r</u> ogram		
✓ <u>V</u> erify		
Verify <u>C</u> hecksum		
SVF Options		
Create SVF Only	no program operations)	
SVF File:		
?)	OK Cancel	Apply

content/uploads/2018/05/vivado_select_mem_device2.png)

7. Technical Specifications

Edit(https://numato.com/help/wp-adm	in/admin.php?page=tablepress&action	n=edit&table_id=246)
Parameter *	Value	Unit
Basic Specifications		
Number of GPIOs (Max)	76	
On-board Oscillator Frequency	100 (x1)	MHz
(ASEM1-		
100.000MHZ-LC-T)		
DDR3 (MT41J123M16HA-125)	2 (x1)	GB
SPI Flash Memory	128	Mb
(N25Q128A13ESE40E)		
IIC Eeprom (24AA02E48T-I/OT)	2	Kb
FPGA Specifications		
Internal supply voltage relative to	-0.5 to 1.1	V
GND		
Auxiliary supply voltage relative to	-0.5 to 2.0	V
GND		
Output drivers supply voltage relative	-0.5 to 3.6	V
to GND		
Connector Header Specifications		
(ASP-134603-01)		
Number of Positions	160	
Number of Rows	4	
Height above Board	6.55	mm
Pitch	1.27	mm
Mated Receptacle on Tagus module	ASP-134603-01	

8. Mechanical Dimensions

(https://numato.com/help/wp-content/uploads/2018/05/TagusPd.pdf)

9. Vivado XDC Constraints

Download Tagus Constraints for Vivado <LINK>

10. Schematics

Tagus V1.0 Schematics(https://numato.com/help/wp-content/uploads/2018/05/TagusSchematic.pdf)

11. Tagus FMC Easy Reference

Tagus FMC Easy Reference(https://numato.com/help/wpcontent/uploads/2018/05/Tagus_FMC_Easy_Reference.pdf)