DUAL BINARY TO 1 OF 4 DECODER/DEMULTIPLEXERS:

4555B OUTPUTS HIGH ON SELECT 4556B OUTPUTS LOW ON SELECT

- EXPANDABLE WITH MULTIPLE PACKAGES
- STANDARD, SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100 nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC TENTATIVE STANDARD No. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

The HCC 4555B, HCC 4556B (extended temperature range) and the HCF 4555B, HCF 4556B (intermediate temperature range) are monolithic integrated circuits available in 16-lead dual in-line plastic or ceramic package, ceramic flat package and plastic micropackage.

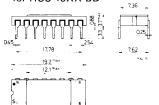
The HCC/HCF 4555B and HCC/HCF 4556B are dual one-of-four decoders/demultiplexers. Each decoder has two select inputs (A and B), an Enable input (E), and four mutually exclusive outputs. On the HCC/HCF 4555B the outputs are high on select; on the HCC/HCF 4556B the outputs are low on select. When the Enable input is high, the outputs of the HCC/HCF 4555B remain low and the outputs of the HCC/HCF 4556B remain high regardless of the state of the select inputs A and B.

ABSOLUTE MAXIMUM RATINGS

V _{DD} *	Supply voltage: HCC types	-0.5 to 20	V
	HCF types	-0.5 to 18	V
Vi	Input voltage	-0.5 to V _{DD} +0.5	V
41	DC input current (any one input)	± 10	mΑ
P_{tot}	Total power dissipation (per package)	200	mW
	Dissipation per output transistor		
	for T _{op} = full package-temperature range	100	mW
T_{op}	Operating temperature: HCC types	-55 to 125	°C
	HCF types	-40 to 85	°C
T _{stg}	Storage temperature	-65 to 150	°C

All voltage values are referred to V_{SS} pin voltage

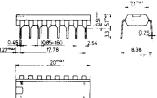
ORDERING NUMBERS:


HCC 4XXX BD for dual in-line ceramic package
HCC 4XXX BF for dual in-line ceramic package, frit seal
HCC 4XXX BK for ceramic flat package
HCF 4XXX BE for dual in-line plastic package
HCF 4XXX BF for dual in-line ceramic package, frit seal

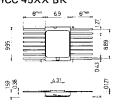
HCF 4XXX BM for plastic micropackage


HCC/HCF 4555 B HCC/HCF 4556 B

MECHANICAL DATA (dimensions in mm)


Dual in-line ceramic package for HCC 45XX BD

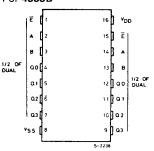
Dual in-line ceramic package for HCC/HCF 45XX BF



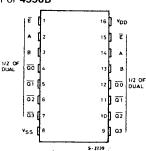
Dual in-line plastic package for HCF 45XX BE

000000

Ceramic flat package for HCC 45XX BK



Plastic micropackage for HCF 45XX BM



CONNECTION DIAGRAMS

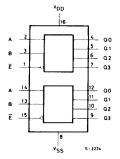
For 4555B

For 4556B

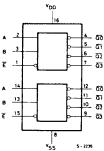
RECOMMENDED OPERATING CONDITIONS

 V_{DD} Supply voltage: HCC types **HCF** types Input voltage T_{op} Operating temperature: HCC types

3 to 18 3 to 15 0 to V_{DD}

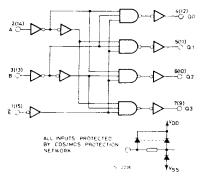

-55 to 125 -40 to 85 V

°C °C

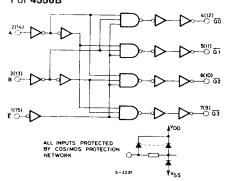

HCF types

FUNCTIONAL DIAGRAMS

For **4555B**



For 4556B



LOGIC DIAGRAMS

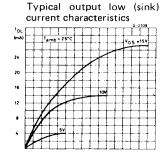
For 4555B

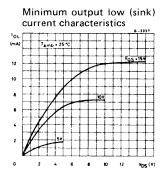
For **4556B**

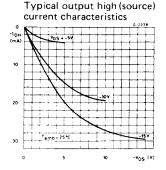
TRUTH TABLE

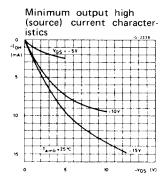
IN ENABL	PUTS E SEL		•	OUTI 459	PUTS 55B	5	OUTPUTS 4556B					
E	В	А	Ω3	Q 2	Q1	00	Q 3	02	0 1	00		
0	0	0	0	0	0	1	1	1	1	0		
0	0	1	0	0	1	0	1	1	0	1		
0	1	0	0	1	0	0	1	0	1	1		
0	1	1	1	0	0	0	0	1	1	1		
1	×	×	0	0	0	0	1	1	1	1		

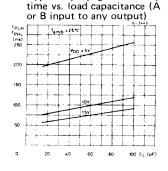
X = DON'T CARE

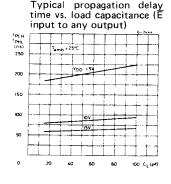

LOGIC 1 ≡ HIGH LOGIC 0 ≡ LOW

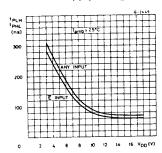

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)


				Values	;										
	Parameter		V _i	v _o	lol	V _{DD}	TLa	w*		25° C		THI	gh *	Unit	
			(V)	(V)	(μA) (V)		Min. Max.		Min. Typ. Max.			Min. Max.			
ار	Quiescent		0/5			5		5		0.04	5		150		
	current	нсс	0/10			10	1	10	1	0.04	10		_	1	
		types	0/15		<u> </u>	15	†	20		0.04	20	1			
			0/20			20	†	100	 	0.08	100	 		μA	
			0/ 5			5		20		0.04	20		150 300 600 5 5 7 8 9 1.5 3 4 6 6 6 7 7 8	1	
		HCF	0/10			10		40	t	0.04	40			0 μA 0 0 μA 0 0 0 V V 5 5 V V MA MA MA	
		types	0/15			15		80		0.04	80	 		1	
Vон	Output high		0/ 5		< 1	5	4.95		4.95			4.95			
011	voltage		0/10		< 1	10	9.95		9.95			9.95		V	
			0/15		< 1	15	14.95		14.95			14.95		1	
VoL	Output low		5/0		< 1	5		0.05			0.05		0.05		
	voltage		10/0		< 1	10	1	0.05			0.05		0.05	V	
			15/0		< 1	15		0.05	1		0.05	t	0.05	1	
VIH	Input high		İ	0.5/4.5	< 1	5	3.5		3.5			3.5		1	
	voltage			1/9	< 1	10	7		7			7		l v	
				1.5/13.5	< 1	15	11		11			11		1	
VIL	Input low		Ī	4.5/0.5	< 1	5		1.5	1		1.5		1.5		
-	voltage			9/1	< 1	10	1	3			3		3	V	
				13.5/1.5	< 1	15		4			4		4		
Гон	Output	нсс	0/ 5	2.5		5	-2		-1.6	-3.2		-1.15			
•	drive		0/ 5	4.6		5	-0.64		-0.51	-1		-0.36			
	current	types	0/10	9.5		10	-1.6		-1.3	-2.6		-0.9			
			0/15	13.5		15	-4.2		-3.4	-6.8		-2.4		ĺ	
			0/ 5	2,5		5	-1.53		-1.36	-3.2		-1.1		mA	
		HCF	0/ 5	4.6		5	-0.52		-0.44	-1		-0.36			
		types	0/10	9.5		10	-1.3		-1.1	-2.6		-0.9			
			0/15	13.5		15	-3.6		-3.0	-6.8		-2.4		1	
loL	Output		0/5	0.4		5	0.64		0.51	1		0.36			
OL.	sink	HCC types	0/10	0.5		10	1.6		1.3	2.6		0.9			
	current	Types	0/15	1,5		15	4.2		3.4	6.8		2.4		i	
			0/ 5	0.4		5	0.52		0.44	1		0.36		mA	
		HCF types	0/10	0.5		10	1.3		1.1	2.6		0.9			
		types	0/15	1.5		15	3.6		3.0	6.8		2.4			
ηн, ης	leakage	HCC types	0/18			18		±0.1		± 10 ⁻⁵	±0.1		± 1	_	
	current	HCF types	0/15	Any in	put	15		±0.3		±10 ⁻⁵	±0.3		± 1		
C,	Input capacit	ance		Any in	put					5	7.5			pF	


T_{Low} = - 55°C for HCC device: -40°C for HCF device. T_{High} = +125°C for HCC device: +85°C for HCF device. The Noise Margin for both "1" and "0" level is: 1V min. 1V min. with V_{DD} = 5V 2V min. with V_{DD} = 10V DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb}=25^{\circ}C$, $C_{L}=50$ pF, $R_{L}=200$ k Ω , typical temperature coefficient for all V_{DD} values is 0,3%/°C, all input rise and fall times = 20 ns)

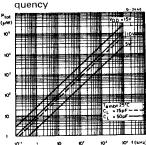

	Parameter	Test conditions		Unit			
	rarameter		V _{DD} (V)	Min.	Тур.	Typ. Max.	
t _{PLH} ,	Propagation delay time		5		220	440	
t _{PLH} ,	(A or B input to Any Output)		10	10 95	190	ns	
			15	70	140		
	Propagation delay time		5		200	400	
tPH∟	(Ē input to Any Output)		10		85	170	ns
			15		65	130	
t _{TLH} ,	Transition time		5		100	200	
t⊤HL			10		50	100	ns
			15		40	80	İ



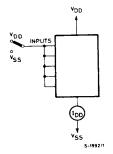


Typical propagation delay

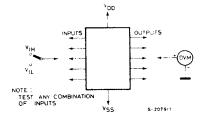
HCC/HCF 4555 B HCC/HCF 4556 B


Typical propagation delay time vs. supply voltage

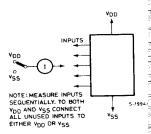
Typical transition time vs. load capacitance



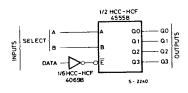
Typical dynamic power dissipation/per device vs. frequency



TEST CIRCUITS


Quiescent device current

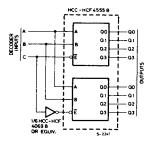
Noise immunity



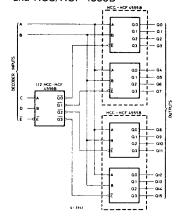
Input leakage current

APPLICATIONS

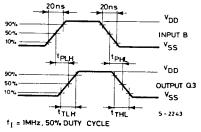
1 of 4 line data demultiplexer using HCC/HCF 4555B



Truth table

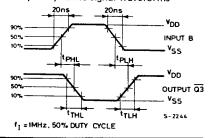

SEL	ECT UTS		OUT	PUTS	
В	Α	QΟ	Q1	Q2	Ω3
0	0	DATA	0	0	0
0	1	0	DATA	0	0
1	0	0	0	DATA	0
1	1	0	0	0	DATA

APPLICATIONS (continued)


1 of 8 decoder using HCC/HCF 4555B

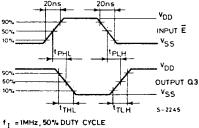
1 of 16 decoder using HCC/HCF 4555B and HCC/HCF 4556B

HCC/HCF 4555B input to Q3 output dynamic signal waveforms

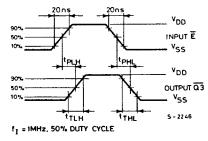

Truth table

IN	IPU	TS			Q OUTPUTS								
С	В	Α	0	1	2	3	4	5	6	7			
0	0	0	1	0	0	0	0	0	0	0			
0	0	1	0	1	0	0	0	0	0	0			
0	1	0	0	0	1	0	0	0	0	0			
0	1	1	0	0	0	1	0	0	0	0			
1	0	0	0	0	0	0	1	0	0	0			
1	0	1	0	0	0	0	0	1	0	0			
1	1	0	0	0	0	0	0	0	1	0			
1	_1	1	0	0	0	0	0	0	0	1			

Truth table


_																				
INPUTS											Q	0	UΤ	Pl	JTS	s				
E	D	С	В	Α	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	1	1	1	0	0	0	0	0	0	0	О	0	0	0	0	0	0	0	1	0
0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	X	Х	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
								х	= 0	ob	n't	ca	re							

HCC/HCF 4556B input to $\overline{Q3}$ output dynamic signal waveforms



APPLICATIONS (continued)

HCC/HCF 4555B E input to Q3 output dynamic signal waveforms

HCC/HCF 4556B \overline{E} input to $\overline{\Omega3}$ output dynamic signal waveforms

